3.1.66 \(\int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx\) [66]

3.1.66.1 Optimal result
3.1.66.2 Mathematica [C] (verified)
3.1.66.3 Rubi [A] (verified)
3.1.66.4 Maple [A] (verified)
3.1.66.5 Fricas [B] (verification not implemented)
3.1.66.6 Sympy [F]
3.1.66.7 Maxima [F(-2)]
3.1.66.8 Giac [F]
3.1.66.9 Mupad [B] (verification not implemented)

3.1.66.1 Optimal result

Integrand size = 25, antiderivative size = 313 \[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}+\frac {16 a^2 b}{3 d e^2 \sqrt {e \cot (c+d x)}}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}+\frac {(a+b) \left (a^2-4 a b+b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}} \]

output
2/3*a^2*(a+b*cot(d*x+c))/d/e/(e*cot(d*x+c))^(3/2)-1/2*(a-b)*(a^2+4*a*b+b^2 
)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d/e^(5/2)*2^(1/2)+1/2*(a- 
b)*(a^2+4*a*b+b^2)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d/e^(5/2 
)*2^(1/2)-1/4*(a+b)*(a^2-4*a*b+b^2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)* 
(e*cot(d*x+c))^(1/2))/d/e^(5/2)*2^(1/2)+1/4*(a+b)*(a^2-4*a*b+b^2)*ln(e^(1/ 
2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/d/e^(5/2)*2^(1/2)+16/3 
*a^2*b/d/e^2/(e*cot(d*x+c))^(1/2)
 
3.1.66.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.42 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.33 \[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=\frac {-6 b \left (-3 a^2+b^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\cot ^2(c+d x)\right )+2 a \left (a^2-3 b^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\cot ^2(c+d x)\right ) \tan (c+d x)+6 b^2 (b+a \tan (c+d x))}{3 d e^2 \sqrt {e \cot (c+d x)}} \]

input
Integrate[(a + b*Cot[c + d*x])^3/(e*Cot[c + d*x])^(5/2),x]
 
output
(-6*b*(-3*a^2 + b^2)*Hypergeometric2F1[-1/4, 1, 3/4, -Cot[c + d*x]^2] + 2* 
a*(a^2 - 3*b^2)*Hypergeometric2F1[-3/4, 1, 1/4, -Cot[c + d*x]^2]*Tan[c + d 
*x] + 6*b^2*(b + a*Tan[c + d*x]))/(3*d*e^2*Sqrt[e*Cot[c + d*x]])
 
3.1.66.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 286, normalized size of antiderivative = 0.91, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.720, Rules used = {3042, 4048, 27, 3042, 4111, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}-\frac {2 \int -\frac {-b \left (a^2-3 b^2\right ) \cot ^2(c+d x) e^2+8 a^2 b e^2-3 a \left (a^2-3 b^2\right ) \cot (c+d x) e^2}{2 (e \cot (c+d x))^{3/2}}dx}{3 e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-b \left (a^2-3 b^2\right ) \cot ^2(c+d x) e^2+8 a^2 b e^2-3 a \left (a^2-3 b^2\right ) \cot (c+d x) e^2}{(e \cot (c+d x))^{3/2}}dx}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-b \left (a^2-3 b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )^2 e^2+8 a^2 b e^2+3 a \left (a^2-3 b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right ) e^2}{\left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4111

\(\displaystyle \frac {\frac {\int -\frac {3 \left (a \left (a^2-3 b^2\right ) e^3+b \left (3 a^2-b^2\right ) \cot (c+d x) e^3\right )}{\sqrt {e \cot (c+d x)}}dx}{e^2}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}-\frac {3 \int \frac {a \left (a^2-3 b^2\right ) e^3+b \left (3 a^2-b^2\right ) \cot (c+d x) e^3}{\sqrt {e \cot (c+d x)}}dx}{e^2}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}-\frac {3 \int \frac {a \left (a^2-3 b^2\right ) e^3-b \left (3 a^2-b^2\right ) e^3 \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{e^2}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}-\frac {6 \int -\frac {e^3 \left (a \left (a^2-3 b^2\right ) e+b \left (3 a^2-b^2\right ) \cot (c+d x) e\right )}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d e^2}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {6 \int \frac {e^3 \left (a \left (a^2-3 b^2\right ) e+b \left (3 a^2-b^2\right ) \cot (c+d x) e\right )}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d e^2}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {6 e \int \frac {a \left (a^2-3 b^2\right ) e+b \left (3 a^2-b^2\right ) \cot (c+d x) e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {\cot (c+d x) e+e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {6 e \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}+\frac {16 a^2 b e}{d \sqrt {e \cot (c+d x)}}}{3 e^3}+\frac {2 a^2 (a+b \cot (c+d x))}{3 d e (e \cot (c+d x))^{3/2}}\)

input
Int[(a + b*Cot[c + d*x])^3/(e*Cot[c + d*x])^(5/2),x]
 
output
(2*a^2*(a + b*Cot[c + d*x]))/(3*d*e*(e*Cot[c + d*x])^(3/2)) + ((16*a^2*b*e 
)/(d*Sqrt[e*Cot[c + d*x]]) + (6*e*(((a - b)*(a^2 + 4*a*b + b^2)*(-(ArcTan[ 
1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 
+ (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])))/2 + ((a + b) 
*(a^2 - 4*a*b + b^2)*(-1/2*Log[e + e*Cot[c + d*x] - Sqrt[2]*Sqrt[e]*Sqrt[e 
*Cot[c + d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*Cot[c + d*x] + Sqrt[2]*Sqrt[ 
e]*Sqrt[e*Cot[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/2))/d)/(3*e^3)
 

3.1.66.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4111
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - 
 a*b*B + a^2*C)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x 
] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - 
 C) - (A*b - a*B - b*C)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B 
, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0 
]
 
3.1.66.4 Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.06

method result size
derivativedivides \(-\frac {2 \left (\frac {\left (-a^{3} e +3 a e \,b^{2}\right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}+\frac {\left (-3 a^{2} b +b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}-\frac {a^{3} e}{3 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {3 a^{2} b}{\sqrt {e \cot \left (d x +c \right )}}\right )}{d \,e^{2}}\) \(331\)
default \(-\frac {2 \left (\frac {\left (-a^{3} e +3 a e \,b^{2}\right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}+\frac {\left (-3 a^{2} b +b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}-\frac {a^{3} e}{3 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {3 a^{2} b}{\sqrt {e \cot \left (d x +c \right )}}\right )}{d \,e^{2}}\) \(331\)
parts \(-\frac {2 a^{3} e \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{4}}-\frac {1}{3 e^{2} \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}\right )}{d}-\frac {b^{3} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \,e^{2} \left (e^{2}\right )^{\frac {1}{4}}}-\frac {3 a \,b^{2} \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \,e^{3}}+\frac {3 a^{2} b \left (\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e^{2} \left (e^{2}\right )^{\frac {1}{4}}}+\frac {2}{e^{2} \sqrt {e \cot \left (d x +c \right )}}\right )}{d}\) \(601\)

input
int((a+b*cot(d*x+c))^3/(e*cot(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-2/d/e^2*(1/8*(-a^3*e+3*a*b^2*e)*(e^2)^(1/4)/e^2*2^(1/2)*(ln((e*cot(d*x+c) 
+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2) 
^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^( 
1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^ 
(1/2)+1))+1/8*(-3*a^2*b+b^3)/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^( 
1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*( 
e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e* 
cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1) 
)-1/3*a^3*e/(e*cot(d*x+c))^(3/2)-3*a^2*b/(e*cot(d*x+c))^(1/2))
 
3.1.66.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1692 vs. \(2 (258) = 516\).

Time = 0.37 (sec) , antiderivative size = 1692, normalized size of antiderivative = 5.41 \[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((a+b*cot(d*x+c))^3/(e*cot(d*x+c))^(5/2),x, algorithm="fricas")
 
output
-1/6*(3*(d*e^3*cos(2*d*x + 2*c) + d*e^3)*sqrt(-(d^2*e^5*sqrt(-(a^12 - 30*a 
^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/(d 
^4*e^10)) + 6*a^5*b - 20*a^3*b^3 + 6*a*b^5)/(d^2*e^5))*log(-(a^12 - 12*a^1 
0*b^2 - 27*a^8*b^4 + 27*a^4*b^8 + 12*a^2*b^10 - b^12)*sqrt((e*cos(2*d*x + 
2*c) + e)/sin(2*d*x + 2*c)) + ((3*a^2*b - b^3)*d^3*e^8*sqrt(-(a^12 - 30*a^ 
10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/(d^ 
4*e^10)) + (a^9 - 18*a^7*b^2 + 60*a^5*b^4 - 46*a^3*b^6 + 3*a*b^8)*d*e^3)*s 
qrt(-(d^2*e^5*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255* 
a^4*b^8 - 30*a^2*b^10 + b^12)/(d^4*e^10)) + 6*a^5*b - 20*a^3*b^3 + 6*a*b^5 
)/(d^2*e^5))) - 3*(d*e^3*cos(2*d*x + 2*c) + d*e^3)*sqrt(-(d^2*e^5*sqrt(-(a 
^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 
+ b^12)/(d^4*e^10)) + 6*a^5*b - 20*a^3*b^3 + 6*a*b^5)/(d^2*e^5))*log(-(a^1 
2 - 12*a^10*b^2 - 27*a^8*b^4 + 27*a^4*b^8 + 12*a^2*b^10 - b^12)*sqrt((e*co 
s(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) - ((3*a^2*b - b^3)*d^3*e^8*sqrt(-(a^ 
12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + 
 b^12)/(d^4*e^10)) + (a^9 - 18*a^7*b^2 + 60*a^5*b^4 - 46*a^3*b^6 + 3*a*b^8 
)*d*e^3)*sqrt(-(d^2*e^5*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6* 
b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/(d^4*e^10)) + 6*a^5*b - 20*a^3*b^3 
 + 6*a*b^5)/(d^2*e^5))) - 3*(d*e^3*cos(2*d*x + 2*c) + d*e^3)*sqrt((d^2*e^5 
*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - ...
 
3.1.66.6 Sympy [F]

\[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=\int \frac {\left (a + b \cot {\left (c + d x \right )}\right )^{3}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate((a+b*cot(d*x+c))**3/(e*cot(d*x+c))**(5/2),x)
 
output
Integral((a + b*cot(c + d*x))**3/(e*cot(c + d*x))**(5/2), x)
 
3.1.66.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*cot(d*x+c))^3/(e*cot(d*x+c))^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.66.8 Giac [F]

\[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=\int { \frac {{\left (b \cot \left (d x + c\right ) + a\right )}^{3}}{\left (e \cot \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*cot(d*x+c))^3/(e*cot(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate((b*cot(d*x + c) + a)^3/(e*cot(d*x + c))^(5/2), x)
 
3.1.66.9 Mupad [B] (verification not implemented)

Time = 14.34 (sec) , antiderivative size = 1946, normalized size of antiderivative = 6.22 \[ \int \frac {(a+b \cot (c+d x))^3}{(e \cot (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
int((a + b*cot(c + d*x))^3/(e*cot(c + d*x))^(5/2),x)
 
output
((2*a^3*e)/3 + 6*a^2*b*e*cot(c + d*x))/(d*e^2*(e*cot(c + d*x))^(3/2)) - at 
an((((e*cot(c + d*x))^(1/2)*(16*a^6*d^3*e^8 - 16*b^6*d^3*e^8 + 240*a^2*b^4 
*d^3*e^8 - 240*a^4*b^2*d^3*e^8) + (32*a^3*d^4*e^11 - 96*a*b^2*d^4*e^11)*(( 
(a*b^5*6i + a^5*b*6i + a^6 - b^6 + 15*a^2*b^4 - a^3*b^3*20i - 15*a^4*b^2)* 
1i)/(4*d^2*e^5))^(1/2))*(((a*b^5*6i + a^5*b*6i + a^6 - b^6 + 15*a^2*b^4 - 
a^3*b^3*20i - 15*a^4*b^2)*1i)/(4*d^2*e^5))^(1/2)*1i + ((e*cot(c + d*x))^(1 
/2)*(16*a^6*d^3*e^8 - 16*b^6*d^3*e^8 + 240*a^2*b^4*d^3*e^8 - 240*a^4*b^2*d 
^3*e^8) - (32*a^3*d^4*e^11 - 96*a*b^2*d^4*e^11)*(((a*b^5*6i + a^5*b*6i + a 
^6 - b^6 + 15*a^2*b^4 - a^3*b^3*20i - 15*a^4*b^2)*1i)/(4*d^2*e^5))^(1/2))* 
(((a*b^5*6i + a^5*b*6i + a^6 - b^6 + 15*a^2*b^4 - a^3*b^3*20i - 15*a^4*b^2 
)*1i)/(4*d^2*e^5))^(1/2)*1i)/(((e*cot(c + d*x))^(1/2)*(16*a^6*d^3*e^8 - 16 
*b^6*d^3*e^8 + 240*a^2*b^4*d^3*e^8 - 240*a^4*b^2*d^3*e^8) + (32*a^3*d^4*e^ 
11 - 96*a*b^2*d^4*e^11)*(((a*b^5*6i + a^5*b*6i + a^6 - b^6 + 15*a^2*b^4 - 
a^3*b^3*20i - 15*a^4*b^2)*1i)/(4*d^2*e^5))^(1/2))*(((a*b^5*6i + a^5*b*6i + 
 a^6 - b^6 + 15*a^2*b^4 - a^3*b^3*20i - 15*a^4*b^2)*1i)/(4*d^2*e^5))^(1/2) 
 - ((e*cot(c + d*x))^(1/2)*(16*a^6*d^3*e^8 - 16*b^6*d^3*e^8 + 240*a^2*b^4* 
d^3*e^8 - 240*a^4*b^2*d^3*e^8) - (32*a^3*d^4*e^11 - 96*a*b^2*d^4*e^11)*((( 
a*b^5*6i + a^5*b*6i + a^6 - b^6 + 15*a^2*b^4 - a^3*b^3*20i - 15*a^4*b^2)*1 
i)/(4*d^2*e^5))^(1/2))*(((a*b^5*6i + a^5*b*6i + a^6 - b^6 + 15*a^2*b^4 - a 
^3*b^3*20i - 15*a^4*b^2)*1i)/(4*d^2*e^5))^(1/2) - 16*b^9*d^2*e^6 + 48*a...